平成25年度 メディア科学専攻修士論文要旨

大西 研究室	氏	名	竹 内 浩 一 郎
修士論文題目			none Based System To Detect ound For Hearing Impaired People

Hearing impaired people can not notice warning sounds such as sirens of emergency vehicles, horns of cars, and alarms of railroad crossings and thus can not behave properly. For example, when they walk on the road and an ambulance is approaching, they can not hear the siren and are likely to get into danger. This paper proposes a system to detect a warning sound for a pedestrian.

The system detects the warning sounds as following. First, an IIR band pass filter is applied to limit to the frequency band which includes the frequency of warning sounds. Next, an IIR comb filter is applied to remove the fundamental and the harmonic frequency components of the warning sounds. Finally, threshold processing is conducted for the amplitude ratio of the input signal to the output signal. If the amplitude ratio is below a threshold, the system notifies the user of the existence of the warning sound. This system is simple and easy to implement on smart phones which most people carry commonly every day.

We conducted experiments to evaluate the performance of the proposed system. An ambulance siren and noises were synthesized with SNR -10dB, SNR 0dB and SNR 10dB and inputted to the system. The results of this experiment showed that the system can detect an ambulance siren with accuracy above 96% under noisy environments above SNR 0dB. In addition, we conducted an experiment in which an ambulance siren recorded on the road is inputted to the system. We found that the siren affected by the Doppler effect is difficult to be detected by the proposed system.

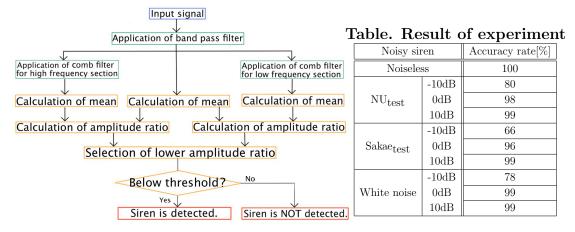


Fig. Outline of the proposed system